#include "stackercpp.h" Stacker::Stacker(bool verbose) { Stacker::verbose = verbose; Stacker::export_width = 0; Stacker::export_height = 0; Stacker::layers = 0; Stacker::trimratio = 0; cv::setNumThreads(0); Stacker::stopwatch = clock(); } void Stacker::add_frame(unsigned char *data, int width, int height) { stopwatch_start(); Mat warp_matrix = Mat::eye(3, 3, CV_32F); Mat mat = Mat(height, width, CV_8UC3, data); Mat grayscale = Mat(height, width, CV_8UC1); cv::cvtColor(mat, grayscale, cv::COLOR_BGR2GRAY); stopwatch_mark("grayscale input"); stopwatch_start(); Scalar mean, stddev; meanStdDev(grayscale, mean, stddev); printf("mean: %f, dev: %f\n", mean[0], stddev[0]); if (mean[0] < 10) { return; } stopwatch_mark("filter"); int number_of_iterations = 5; double termination_eps = 1e-10; TermCriteria criteria(TermCriteria::COUNT + TermCriteria::EPS, number_of_iterations, termination_eps); if (layers == 0) { // First image in the stack is used as the reference to align the next frames to Stacker::reference = grayscale; // Create black image to accumulate the average Stacker::stacked = Mat(height, width, CV_64FC3); Stacker::stacked.setTo(Scalar(0, 0, 0, 0)); // Add first frame to the stack Stacker::stacked += mat; Stacker::layers += 1; } else { // All frames after the initial one are stacked Mat warped = Mat(Stacker::stacked.rows, Stacker::stacked.cols, CV_32FC1); stopwatch_start(); cv::findTransformECC(grayscale, Stacker::reference, warp_matrix, MOTION_HOMOGRAPHY, criteria); stopwatch_mark("find alignment"); stopwatch_start(); warpPerspective(mat, warped, warp_matrix, warped.size(), INTER_LINEAR); stopwatch_mark("warp image"); // Check how much the image should be cropped to hide the warped edges float current_trimratio = cv::videostab::estimateOptimalTrimRatio(warp_matrix, mat.size()); Stacker::trimratio = std::max(Stacker::trimratio, current_trimratio); // Add the warped image to the stack Stacker::stacked += warped; Stacker::layers += 1; } } Mat Stacker::postprocess_mat(Mat input) { stopwatch_start(); int h_crop = (int) ((float) input.cols * Stacker::trimratio); int v_crop = (int) ((float) input.rows * Stacker::trimratio); Mat cropped; input(Rect(h_crop, v_crop, input.cols - h_crop - h_crop, input.rows - v_crop - v_crop)).copyTo(input); stopwatch_mark("trim"); stopwatch_start(); Mat blur; GaussianBlur(input, blur, Size(0, 0), 1.8); std::vector rgb_planes(3); cv::split(blur, rgb_planes); double min_r, max_r, min_g, max_g, min_b, max_b; minMaxIdx(rgb_planes[0], &min_b, &max_b); minMaxIdx(rgb_planes[1], &min_g, &max_g); minMaxIdx(rgb_planes[2], &min_r, &max_r); input = input - Scalar(min_b + 5, min_g + 5, min_r + 5); double scale_r, scale_g, scale_b; scale_r = 255 / (max_r - min_r + 5); scale_g = (255 / (max_g - min_g + 5)); scale_b = 255 / (max_b - min_b + 5); multiply(input, Scalar(scale_b, scale_g, scale_r), input); stopwatch_mark("levels"); stopwatch_start(); float gamma = 1 / 0.9; Mat table(1, 256, CV_8U); uchar *p = table.ptr(); for (int i = 0; i < 256; ++i) { p[i] = (uchar) (pow(i / 255.0, gamma) * 255); } LUT(input, table, input); stopwatch_mark("gamma"); stopwatch_start(); Mat sharpened; GaussianBlur(input, sharpened, Size(0, 0), 1.7); addWeighted(input, 2.5, sharpened, -1.5, 0, sharpened); stopwatch_mark("sharpen"); /* Disabled CLAHE local contrast, it's a bit to overpronounced and doesn't * seem really necessary at this point stopwatch_start(); Mat lab; cvtColor(sharpened, lab, COLOR_BGR2Lab); std::vector lab_planes(3); cv::split(lab, lab_planes); stopwatch_mark("to Lab"); stopwatch_start(); cv::Ptr clahe = cv::createCLAHE(); clahe->setClipLimit(1); clahe->setTilesGridSize(Size(8, 8)); cv::Mat dst; clahe->apply(lab_planes[0], dst); dst.copyTo(lab_planes[0]); stopwatch_mark("clahe"); stopwatch_start(); Mat result; cv::merge(lab_planes, lab); cvtColor(lab, result, COLOR_Lab2BGR); stopwatch_mark("to RGB"); */ return sharpened; } char * Stacker::get_result() { // Complete the averaging and go back to an 8-bit image stopwatch_start(); Stacker::stacked.convertTo(Stacker::stacked, CV_8U, 1. / Stacker::layers); stopwatch_mark("average"); // Run the final-frame postprocessing Mat result = postprocess_mat(Stacker::stacked); Stacker::export_width = result.cols; Stacker::export_height = result.rows; // Convert mat to bytes size_t size = result.total() * result.elemSize(); char *data = (char *) malloc(size); std::memcpy(data, result.data, size * sizeof(char)); return data; } char * Stacker::postprocess(unsigned char *data, int width, int height) { // Convert bytes to mat Mat mat = Mat(height, width, CV_8UC3, data); // Run the final-frame postprocessing Mat result = postprocess_mat(mat); Stacker::export_width = result.cols; Stacker::export_height = result.rows; // Convert mat to bytes size_t size = result.total() * result.elemSize(); char *outdata = (char *) malloc(size); std::memcpy(outdata, result.data, size * sizeof(char)); return outdata; } void Stacker::stopwatch_start() { Stacker::stopwatch = clock(); } void Stacker::stopwatch_mark(const char *name) { if (Stacker::verbose) { printf("[%.1fms] %s\n", float(clock() - Stacker::stopwatch) / CLOCKS_PER_SEC * 1000, name); } } int Stacker::get_width() { return Stacker::export_width; } int Stacker::get_height() { return Stacker::export_height; }